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Motivation
• Drastically reduce DoF to manage macroscopic 

and relevant information on a system

• Justify rich- and simple-enough lumped insights on 

operation devoted to long term technico-economic 

planning exercise:
• Space: from µm to grid scale

• Time: from ms to 50-100 years

• Provide a suitable description of power flows:
• Supply vs. Demand adequacy

• Ancillary services

to desintricate power management features

• Existence of « constant(s) of motion » for any 

steady-state dynamic system
• Energy-based theoretically expected from time-uniformity

➔ 2nd principle of thermodynamics

➔ Space aggregation and time reconciliation
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Couplings:

• magnetic free currents I

• Electric earth potential V

• heat tank Joule losses

The utility acts on:

• the mechanical power Pm

• the excitation of the rotor I

Modeling issue:

➔ Decouple control and power flow
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Electromagnetism: from steady-state to transient regimes
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Electromagnetism: A natural trend towards reversibility
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= min 𝑃𝑚 −
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𝑑𝑡
≥ 0Weak reversibility : 

𝑃𝑚 −
𝑑G

𝑑𝑡
≥ 02nd principle of thermodynamics: 



Energy conservation: P𝑚 −
𝑑G

𝑑𝑡
= min 𝑃𝐽𝑜𝑢𝑙𝑒 +

𝑑 𝜑I + 𝑄V

𝑑𝑡
≥ 0
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Electromagnetism: A natural trend towards reversibility
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Lenz law

Faraday's law is restored by 

assuming a reversible evolution:
• All the energy losses (conversion, 

distribution, end-use) are attainable
• Multi-scale framework with successful 

issues (material law,…, CAD tools,...)

Energy-based «constants of motion»:

➔existence justified by time-uniformity:

• Electromagnetic energy w/ coupling G

• Kinetic energy Ekin

➔Conversely, provide means for:
• time-reconciliation, and 

• space-analysis
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Electromagnetism: A natural trend towards reversibility

Work flow
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P𝑒𝑙𝑒𝑐 + P𝑚,𝑒𝑥𝑡 −
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−
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Faraday’s lawPower balance
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Power management: Basics
Focus at the higher aggregated scale

Work flow
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P𝑒𝑙𝑒𝑐 + P𝑚,𝑒𝑥𝑡 = P𝐽𝑜𝑢𝑙𝑒 +
𝑑E𝑘𝑖𝑛
𝑑𝑡

+
𝑑F

𝑑𝑡

Transient stability

(ancillary services)
System 

adequacy

Poynting equation:

fatal min-hour

fatal

seconds ms



J. M. Kosterlitz, “The critical properties of the two-dimensional xy model,” Journal of Physics C: Solid State Physics, vol. 7, pp. 1046–1060, 1974.

Synchronism is not inconditionnally stable!

➔Capture the critical behavior thanks to a dedicated lattice model:

● Coherence of fully-correlated oscillator population:

● Synchronism is ensured for tight enough binding (admittance matrix):

● Disordering factors:

● N→ (long range disordering modes)

● Intensive use of transmission lines

● High frequency

● Ordering factors:

● Lattice interaction and admittance

● Locally balanced connection point

● Low frequency
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Power management: Leverage the highest kinetic energy
Before adequacy (primary/secondary/tertiary reserve) 
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𝐸𝑘𝑖𝑛  ≤ 𝐸𝑘𝑖𝑛 ≤ σ𝐸𝑘𝑖𝑛  ?
Upper bound is enforced by 

synchronism



Synchronism:

• Voltage plan conditions and Reactive power

• Gibbs free-energy G induces electrodynamic resistant torque

• « Rigidity »-induced synchronism and space-aggregation:

➔ Decrease congestion rate

➔ Improve grid connectivity

➔ Decrease frequency
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Power management: Decoupling control and power flow

𝐻𝑠𝑦𝑛 =
 𝐺

max
𝑖𝑗
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Transient stability:

• Frequency

• Kinetic energy Ekin

• Transient stability provides time-reconciliation:

➔ Extend « copper plate » for aggregation

➔ Favour huge moving mass

➔ Increase the frequency
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Power management: Decoupling control and power flow

𝐻𝑘𝑖𝑛 =
σ𝐸𝑘𝑖𝑛 

𝑆

Work flow

Heat 

transfer

heat tank T





𝐸𝑘𝑖𝑛  end-usePm,out

RI2

Pm,ingenerator



Active power flow exchanged throughout the grid

• : 
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Power management: Decoupling control and power flow
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Power management: Forthcoming competitions
Naturally expressed within the second principle:

P𝑒𝑙𝑒𝑐 + P𝑚,𝑒𝑥𝑡 −
𝑑E𝑘𝑖𝑛
𝑑𝑡

−
𝑑G

𝑑𝑡
= min 𝑃𝐽𝑜𝑢𝑙𝑒 +

𝑑 𝜑𝐼 + 𝑄𝑉

𝑑𝑡
≥ 0

flexibility adequacy stability coupling

Sources hn

wind

storage

DSM

Functional

materials

Cu, Ag, Al

Interfaces grid-tie

inverters

grid-forming

inverters

hydro (dam)

conv. power plant

Si(C) 

Ga

Dy, Nd

Li

kg Fe

Si(C) 

Ga



Energy-based «constants of motion»:

➔ Existence justified by time-uniformity:

– Electromagnetic energy w/ coupling G

– Kinetic energy Ekin

➔ Field-type energies dedicated to stability

Adequacy leverages flexibilities but is limited by:

➔ IT energy for dispersed asset management

➔ Tension on functional materials

➔ Stability issue

Mixed line is derived from: X. Li, N. Maïzi, and V. Mazauric, "A lattice-based 

representation of power systems dedicated to synchronism analysis," International Journal 

in Applied Electromagnetics and Mechanics, vol. 59, pp. 1049-1056, 2019.

Adapted from: T. M. Gür, "Review of electrical energy storage technologies, materials and 

systems: challenges and prospects for large-scale grid storage," Energy & Environmental 

Science, vol. 11, pp. 2696-2767, 2018.

Stability vs. Adequacy issues

adequacy

stability



Thermodynamics provides a natural and very efficient framework to derive an aggregated representation 

of power system dynamics.

Grid synchronism is a critical issue to correctly aggregate kinetic energy and face to fluctuations:

• Centralized systems favors transient stability but needs grid reinforcement for the aggregation of 

kinetic energy; while

• Decentralized system favors synchronism but jeopardize transient stability by an intrinsic lack of 

kinetic energy.

For an expected level of reliability, forthcoming power mixes will result from trade-offs between:

➔ Variable installed capacity and storage-induced inertia with subsequent tension (circularity/extraction) 

on functional materials for “clean” power management; and 

➔ Inertia and control of flexibilities with subsequent extra-energy for dedicated ICT to enforce adequacy.
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Conclusion




